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ABSTRACT
With the wide adoption of mobile devices and web applications,

location-based social networks (LBSNs) offer large-scale individual-

level location-related activities and experiences. Next point-of-

interest (POI) recommendation is one of the most important tasks

in LBSNs, aiming to make personalized recommendations of next

suitable locations to users by discovering user preferences from

their historical activities. Noticeably, LBSNs have offered unpar-

alleled access to abundant heterogeneous relational information

about users and POIs (including user-user social relations, such

as families or colleagues; and user-POI visiting relations). Such

relational information holds great potential to facilitate the next

POI recommendation. However, most existing methods either focus

on merely the user-POI visits, or handle different relations based

on over-simplified assumptions while neglecting relational hetero-

geneities. To fill these critical voids, we propose a novel framework,

MEMO, which effectively utilizes the heterogeneous relations with

a multi-network representation learning module, and explicitly

incorporates the inter-temporal user-POI mutual influence with

coupled recurrent neural networks. Extensive experiments on real-

world LBSN data validate the superiority of our framework over

the state-of-the-art next POI recommendation methods.
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1 INTRODUCTION
The era of information explosion has witnessed rapid developments

and adoptions of mobile devices and web applications. As a result,

location-based social networks (LBSNs) have recorded rich activi-

ties at different points-of-interests (POIs), such as shopping malls,

restaurants, or gyms. Next POI recommendation represents one of

the most important tasks in LBSNs [12, 27]. It aims to suggest the

next suitable location(s) for each person based on his/her preference

that can be learned from his/her prior information on LBSNs, such

as user profile, social relationship, and historical activities.

Prior research has performed next POI recommendation by cap-

turing users’ preferences from their trajectories, i.e., users’ tempo-

rally ordered location information at different POIs. For instance,

sequential statistical models (e.g. Markov chain) [2, 4] are widely

used. In addition, graph-based methods [6, 24] learn both user and

POI representations for recommendation by modeling each user-

POI visit as an edge in a graph. Another line of research [3, 27, 28]

applies recurrent neural networks (RNNs) based models to capture

users’ preferences by modeling users’ trajectories as sequences.

More recent studies adopt self-attention [22] to capture long-term

dependencies and spatio-temporal correlations among POIs [13, 15].

Despite the success of these methods, next POI recommendation

on LBSNs remains a daunting task due to the following challenges:

1) users’ preferences are complex and often bear strong connections

with different types of social relations [18, 20]. As indicated in [16],

different social relations affect users differently. For example, users

seek recommendations on shopping malls from family members,

whereas recommendations on training institutions from colleagues

(Fig. 1). These heterogeneous social relations, together with the

user-POI relations formed by the users’ visits to POIs, bring great

challenges to effectively utilize the rich information embedded.

Most existing methods [14, 19, 24, 25] either focus solely on the

user-POI relations, or assume the node representations in different

relation-specific networks are within the same latent space. 2) Cap-

turing the crucial, inter-temporal, mutual influence between the

users and POIs remains challenging. In the user-POI relations, users’

preferences and POIs’ latent status (e.g., reputation) reciprocally

influence each other over time. As shown in Fig. 1, if Anna left a

positive comment about a shopping mall that she recently visited,
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Figure 1: Heterogeneous social relationship: Jack takes sister
Anna’s recommendations on shopping malls and colleague
Liam’s recommendations on training institutions.

or recommended it to others, then the reputation and popularity of

this POI may be elevated. In turn, the experience and reputation

with this POI will affect Anna’s future visitation.

To address these challenges, we propose a novel framework,

Multi-Relational Modeling (MEMO) for next POI recommendation.

First, to utilize the diverse user-user social relations (e.g., families

or colleagues) and user-POI relations, we develop a multi-relational

modeling module based on multiple graph convolutional networks

(GCNs) [5] and self-attention [9]. Specifically, we map each type of

relation to a corresponding network to learn the relation-specific

representations; and then adopt a self-attention mechanism to ag-

gregate the user representations from the different relation types.

Next, to capture the mutual influence between the users and POIs

over time, we design a user-POI mutual influence modeling com-

ponent based on coupled recurrent neural networks (RNNs) that

mutually update each other’s representations [10].

In summary, this research contributes to the literature along

three dimensions. One, it extends the extant studies on next POI

recommendation by accounting for the critical, yet overlooked,

heterogeneous relations, particularly heterogeneous social relations

among users, and inter-temporal user-POI mutual influence. Two,

this research proposes a novel framework, MEMO, to incorporate

the heterogeneous relations with a multi-network representation

learning module, and capture the inter-temporal user-POI mutual

influence with coupled RNNs. Three, it substantiates the proposed

framework via the experiments on large-scale real-world data and

comparisons with the state-of-the-art baselines.

2 PROBLEM STATEMENT
LetU = {𝑢1, 𝑢2, ..., 𝑢𝑈 } be a set of U users, andL = {𝑙1, 𝑙2, ..., 𝑙𝐿} be
a set of L POIs. Each POI 𝑙 ∈ L is associated with a geo-coordinate

(longitude, latitude) indicating its geographical location.

Trajectory. The trajectory of each user 𝑢𝑖 ∈ U is a time-ordered

sequence: 𝐶 (𝑢𝑖 ) = {𝑐1 (𝑢𝑖 ), 𝑐2 (𝑢𝑖 ), ..., 𝑐𝐾 (𝑢𝑖 )}. Each element 𝑐𝑘 (𝑢𝑖 )
can be representedwith a tuple (𝑙𝑘 , 𝑡𝑘 ), where 𝑙𝑘 is the geo-coordinate
of the POI visited by user 𝑢 at timestamp 𝑡𝑘 .

User-User Social Relations. Let R = {𝑟1, 𝑟2, ..., 𝑟𝑃 } denote a set
of 𝑃 social relations among the users. We define a user-user social

relation as a triple (𝑢𝑖 , 𝑢 𝑗 , 𝑟𝑝 ), where 𝑢𝑖 , 𝑢 𝑗 ∈ U, 𝑟𝑝 ∈ R, indicat-
ing that user 𝑢𝑖 and 𝑢 𝑗 have a social relation of type 𝑟𝑝 , which is

assumed to be symmetric for simplicity. Note that there may exist

multiple types of social relations between two users.

Next POI Recommendation. At each timestamp 𝑡 , the next POI

recommendation task takes each user’s trajectory from timestamps

1 to 𝑡 and different types of social relations as input, and recom-

mends a list of the suitable POIs with the highest prediction scores

for each user to visit at next timestamp 𝑡 + 1.

3 THE PROPOSED FRAMEWORK
We now introduce the proposed framework, MEMO, consisting of

two main components (Fig. 2): 1) a relation modeling module

to effectively utilize the heterogeneous relations, and 2) a user-
POI mutual influence modeling module to capture the mutual

influence between the users and POIs over time.

3.1 Relation Modeling
To capture each user’s preferences for the next POIs, MEMO lever-

ages the heterogeneous relations, including multiple user-user so-

cial relations and user-POI relations collected from LBSNs. Specifi-

cally, to model 𝑃 different types of user-user social relations among

the user setU, we enlist 𝑃 networks G1, ...,G𝑃 , each with its cor-

responding symmetric adjacency matrix A1, ...,A𝑃 , where A𝑝 ∈
R𝑈×𝑈

and A𝑝 [𝑖, 𝑗] = A𝑝 [ 𝑗, 𝑖] = 1 if there is a type 𝑝 social rela-

tion between user 𝑢𝑖 and 𝑢 𝑗 . Similarly, the user-POI network G𝐶
corresponds to an adjacency matrix A𝐶 ∈R(𝑈 +𝐿)×(𝑈 +𝐿)

that cap-

tures whether a user has visited a specific POI or not. In total, there

are 𝑃 + 1 types of relations, including 𝑃 types of user-user social

relations and 1 type of user-POI relations.

Relation-Specific Representation Learning. To accommodate

the diverse types of relations, we leverage a relation-specific repre-

sentation learning module to map the nodes into a latent represen-

tation space corresponding to each specific relation separately. First,

for each node 𝑣𝑖 , a general embedding x𝑖 is initialized randomly.

We then use a relation-specific transition function Φ𝑝 (·) to map

each x𝑖 to a new embedding x𝑝
𝑖
corresponding to the 𝑝-th relation

type for any 𝑝 ∈ [𝑃 + 1]: x𝑝
𝑖
= Φ𝑝 (x𝑖 ). Based on x𝑝

𝑖
, we learn a

relation-specific representation h𝑝
𝑖
for each node 𝑣𝑖 by aggregating

the embeddings of the neighbors on each network G𝑝 , which is

implemented by a GCN [5] layer with attention mechanism [23, 26].

Aggregation over Different Relation Types. As discussed in

[8], one should not simply assume homogeneous relations or nodes

representations across relation-specific networks within the same

latent space. Inspired by [8], we hence utilize a self-attention mech-

anism [22] to aggregate all relation-specific representations of each

node into a common latent space. This allows us to effectively

capture each user’s preference embedded in different types of rela-

tions. Specifically, given each node 𝑣𝑖 , and all its representations

in different networks, we map each representation correspond-

ing to the 𝑝-th (𝑝 ∈ [𝑃 + 1]) relation type h𝑝
𝑖
into a Key vector

k𝑝
𝑖

= W𝐾
𝑝 h

𝑝

𝑖
, a Query vector q𝑝

𝑖
= W𝑄

𝑝 h
𝑝

𝑖
, and a Message vec-

tor m𝑝
𝑖
= W𝑀

𝑝 h𝑝
𝑖
, respectively. Here W𝑄

𝑝 ,W
𝐾
𝑝 ,W

𝑀
𝑝 are the train-

able parameters used for the above linear projections. We then

calculate the attention weight between each pair of relation types

(𝑝1, 𝑝2) with the similarity between the 𝑝1-th Query vector and

the 𝑝2-th Key vector: 𝛼 (𝑝1, 𝑝2) = Softmax∀𝑝2∈[𝑃+1] (k
𝑝2
𝑖
q𝑝1
𝑖
/
√
𝑑),

where 𝑑 is the representation dimension. Note that different from

the ordinary attention mechanisms [23] that assume the same la-

tent space for the input representations, the above linear projec-

tions in our framework are relation-specific, hence allowing us

to aggregate the relation-specific representations from different

latent spaces. We then aggregate the representations from the dif-

ferent relation types as h𝑖 = MLP( [ ˜h1
𝑖
| | ˜h2
𝑖
| |...| | ˜h𝑃+1

𝑖
]), where | | is a

concatenation operation, MLP(·) is a multilayer perceptron, and
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Figure 2: Overview ofMEMO for next POI recommendation.

˜h𝑝
𝑖
= ⊕𝑝′∈[𝑃+1] {𝛼 (𝑝, 𝑝 ′) · m

𝑝′

𝑖
} is the representation that aggre-

gates the messages from all relation types to the 𝑝-th relation type,

with ⊕ denoting the element-wise sum.

3.2 User-POI Mutual Influence Modeling
In the user-POI relations, the users’ and POIs’ latent status may

be mutually influenced by each other over time. We hence need to

update the users’ and POIs’ representations to capture such amutual

influence. Specifically, we deploy a coupled RNN [10] consisting

of a user RNN (RNN𝑈 ) and a location RNN (RNN𝐿) to respectively

learn the users’ and POIs’ representations at each timestamp.

Here, RNN𝑈 incorporates the POIs’ representations to update the

users’ representations, and vice versa. Suppose that user u visited

POI l at timestamp 𝑡 in 𝐶 (𝑢), user 𝑢’s representation at timestamp

𝑡 + 1 is influenced by location 𝑙 ’s representation at timestamp 𝑡 , for-

mally derived as: h𝑡+1𝑢 = 𝜎 (W𝑈
1
h𝑡𝑢+W𝑈

2
h𝑡
𝑙
+W𝑈

3
z△𝑡 +W𝑈

4
z△𝑑 ). The

matrices W𝑈
1
, ...,W𝑈

4
are the parameters of RNN𝑈 . For simplicity,

we use h𝑡+1𝑢 and h𝑡𝑢 to respectively denote user 𝑢’s representations

at timestamp 𝑡 + 1 and 𝑡 ; and h𝑡
𝑙
the representation of location 𝑙

at timestamp 𝑡 . Here, z△𝑑 and z△𝑡 are the representations incor-
porating the spatio-temporal information to facilitate next POI

recommendation (details later in this section).

Similarly, RNN𝐿 also leverages the users’ representations to up-

date the representations of each POI 𝑙 at next timestamp h𝑡+1
𝑙

. Specif-

ically, we denote the list of users who visited 𝑙 at timestamp 𝑡 as

U(𝑙, 𝑡), and denote the list of their representations as h𝑡U(𝑙,𝑡 ) . The

representation of POI 𝑙 is updated as: h𝑡+1
𝑙

= RNN𝐿 (h𝑡𝑙 , h
𝑡
U(𝑙,𝑡 ) ). At

each timestamp 𝑡 , the representation of POI 𝑙 is recursively updated

|U(𝑙, 𝑡) | times in the chronological order of the users’ visits. To

update the user-POI representations in parallel while maintaining

the time dependency, we create each mini-batch by selecting the

independent user-POI visits from the users’ trajectories, to ensure

that each two visits processed in the same batch do not share any

common users or POIs [10].

Spatio-Temporal Representation.Apart from the users’ relations

and trajectories, we also incorporate the spatio-temporal informa-

tion to facilitate next POI recommendation. For instance, when

roaming around, a user might be interested in visiting a club near

Table 1: Summary statistics of datasets.

#Users #POIs #Visits

#Family

Relations

#Colleague

Relations

B’more July 17,892 559 1,753,382 19,026 17,646

DC July 7,517 4,213 262,679 1,100 12,316

DC August 3,418 3,450 277,093 1,290 14,250

Table 2: Comparison of next POI recommendation methods.

User Social

Model Embeddings Relations Trajectories

Statistical

Method

Markov [17] ✓

Graph

Network

LightGCN [6] ✓ ✓

Recurrent

Network

GRU4Rec [7] ✓
DeepMove [3] ✓

Self-

attentive

Method

SASRec [9] ✓
TiSASRec [11] ✓
STAN [15] ✓ ✓

Our
Method MEMO ✓ ✓ ✓

his/her current location (spatial) within the next few hours (tem-

poral). We hence design a mechanism to efficiently incorporate

such spatio-temporal information by utilizing the spatial transition

(distance) and time transition (visiting time intervals) between each

pair of POIs consecutively visited by a user. Specifically, we intro-

duce two learnable vectors, t𝑠 and t𝑙 to respectively represent the

short and long time transitions. The representation of a time inter-

val is then formally obtained as: z△𝑡 = t∗ t+ 𝑡𝑎𝑛ℎ(t), where t = t𝑠 if
the time transition is shorter than a preset threshold 𝜃𝑡 , otherwise

t = t𝑙 . Here, ∗ denotes the element-wise multiplication. Similarly,

we obtain the representation for spatial intervals z△𝑑 with a spatial

threshold 𝜃𝑑 . The distance between two POIs is formed by Haver-

sine distance [21]. After updating each user 𝑢’s representation h𝑡𝑢
and each POI 𝑙 ’s representation h𝑡

𝑙
, we recommend a list of POIs

for user 𝑢 to visit at the next timestamp 𝑡 + 1 by selecting the POIs

with the highest prediction scores computed from a fully connected

layer. We model the prediction of the next POI as a multi-class

classification problem, where the ground truth is the POI each user

actually visits at the next timestamp. We also adopt cross-entropy

loss for model optimization [3].



Table 3: Performance of next POI recommendation for different methods.
Baltimore July DC July DC August

Recall@10 MRR@10 Recall@10 MRR@10 Recall@10 MRR@10

Markov 0.257 ± 0.001 0.088 ± 0.004 0.471 ± 0.012 0.224 ± 0.012 0.431 ± 0.013 0.224 ± 0.012

LightGCN 0.650 ± 0.044 0.392 ± 0.011 0.609 ± 0.021 0.291 ± 0.034 0.622 ± 0.019 0.311 ± 0.014

GRU4Rec 0.657 ± 0.009 0.384 ± 0.006 0.617 ± 0.019 0.300 ± 0.013 0.624 ± 0.005 0.306 ± 0.005

DeepMove 0.715 ± 0.031 0.402 ± 0.003 0.660 ± 0.007 0.333 ± 0.006 0.648 ± 0.014 0.331 ± 0.009

SASRec 0.738 ± 0.029 0.415 ± 0.003 0.694 ± 0.019 0.335 ± 0.006 0.687 ± 0.006 0.353 ± 0.007

TiSASRec 0.836 ± 0.002 0.420 ± 0.007 0.760 ± 0.011 0.353 ± 0.014 0.763 ± 0.006 0.379 ± 0.003

STAN 0.868 ± 0.003 0.426 ± 0.004 0.807 ± 0.005 0.360 ± 0.007 0.816 ± 0.007 0.426 ± 0.004

MEMO 0.891±0.004 0.446±0.009 0.831±0.002 0.380±0.006 0.840±0.003 0.435±0.008

Baltimore July
Baltimore July DC July DC July

Figure 3: Ablation studies.

Dimension Timestampinterval Time threshold Distance threshold
Figure 4: Parameter studies.

4 EXPERIMENTS
We now evaluate the effectiveness of the proposed method in next

POI recommendation by leveraging real-world location big data.

4.1 Experimental Setting
Data. The population-scale individual-level location data are pro-

vided by a leading data aggregator, who aggregates the data from

more than 400 commonly used mobile apps, via a proprietary SDK

installed on these apps to minimize battery drainage while tracking

locations. The data are collected in compliance with privacy regula-

tions, including GDPR and CCPA. The data cover one quarter of the

U.S. population and are representative of the population. Each user

is tracked on average every five minutes. Each data record contains

an anonymized user ID common across all apps, timestamp, lon-

gitude, and latitude of the location visited, speed, and dwell time.

Specifically, we analyze three datasets over different time periods in

2019: Baltimore (B’more) July, DC July, and DC August. Analyzing

the users’ trajectories via the state-of-the-art stop point detection

method, Infostop [1], we detect the users’ home and work locations

as the most frequent stop points during the nighttime and daytime

respectively; and as a result infer their focal social relations, families

and colleagues. Table 1 shows the data statistics.

Baselines.We compare the proposed framework with the repre-

sentative baselines across four categories from Table 2, including: 1)

statistical methods, where theMarkov [17] method recommends

the next POIs by utilizing the dependency between every two con-

secutive visits; 2) Graph Network method, where LightGCN [6]

leverages the user-POI relation graph and a simplified GCN model

with controllable oversmoothing for recommendation; 3) Recurrent

Network methods, where GRU4Rec [7] and DeepMove [3] use

RNNs to capture the users’ preferences hidden in the trajectories;

and 4) Self-attentive methods, including SASRec [9], TiSASRec
[11], and STAN [15]. These methods use self-attention to capture

the long-term dependencies in the users’ trajectories.

Parameter Settings. Our implementation code is available at

https://github.com/submission1443/MEMO. For each dataset, we

partition the training/validation/test set as 80%/10%/10%; and set

the training epoch as 50 and learning rate as 0.001. All reported

results include the mean and standard deviation over 10 repeated

runs. We use the Adam optimizer. By default, we set the represen-

tation dimension 𝑑 = 128, length of each of the 400 timestamps

as 13, 000 seconds, time threshold 𝜃𝑡 = 3600 seconds, and distance

threshold 𝜃𝑑 = 200 meters. We use two popular metrics: Recall@K

and MRR@K, to gauge the model performance. We set K as 10.

4.2 Performance of Next POI Recommendation
Table 3 shows the performance of the different methods. The pri-

mary findings include: 1) GRU4Rec and DeepMove consistently

outperform the Markov chain model, as the latter focuses merely

 https://github.com/submission1443/MEMO


on the consecutive visits, whereas the RNN-based methods capture

more patterns hidden in the trajectories; 2) LightGCN performs

worse than the RNN-based models, suggesting that only utilizing

the user-POI relations and static embedding limit the POI recom-

mendation performance; 3) STAN exhibits competitive performance,

as it learns the user embeddings for personalized recommendations,

and also explicitly leverages the spatio-temporal information with

the self-attention mechanism; and 4) MEMO consistently outper-

forms all baselines, primarily because i) MEMO captures the users’

preferences more comprehensively by integrating the users’ repre-

sentations learned from different relations; ii) MEMO models the

user-POI mutual influence over time, with the learned representa-

tions better capturing the latent status of the users/POIs.

4.3 Ablation Studies
We further conduct ablation studies to investigate the contributions

of different model components. We compare MEMO with its vari-

ants: (a) MEMO-NG in which the relation modeling component is

removed; (b) MEMO-NA in which the self-attention mechanism is

replaced with an ordinary attention mechanism based on a bilinear

function; (c) MEMO-NR in which the mutual influence compo-

nent is removed, i.e., the representations are learned just from the

relation modeling component; and (d) MEMO-NTS in which the

spatio-temporal representation is not used.

Due to the space limit, we only report the results on the Balti-

more July and DC July data. The DC August data produce similar

findings. Fig. 3 shows that MEMO-NG cannot achieve satisfactory

performance as it does not utilize the relational information. The

performance of MEMO-NA also degrades as it implicitly assumes

that all relation-specific representations are in the same latent space.

The performance gap between MEMO and MEMO-NR indicates

the importance of mutual influence modeling; and the comparison

between MEMO-NTS and MEMO demonstrates the contribution

of the spatio-temporal information to the recommendations.

4.4 Parameter Studies
To evaluate the robustness of our framework, we compare the

performance under different hyperparameters. Fig. 4 shows the

performance of MEMO with the varied representation dimension 𝑑

in the range of {32, 48, 64, 96, 128}; the interval between two times-

tamps from (5 ∼ 27) × 10
3
seconds; the time threshold 𝜃𝑡 from 600

to 21600 seconds; and distance threshold 𝜃𝑑 from 50 to 1000 meters.

Due to the space limit, we only display the results on the Baltimore

July data. The results from the other two data remain similar. In

general, the model is not very sensitive to the parameter settings,

but the performance can still benefit from proper fine-tuning.

5 CONCLUSION
In this research, we focus on next POI recommendation by ad-

dressing two main challenges: modeling different types of relations

and user-POI mutual influence over time. Methodologically, we

propose a novel framework, MEMO, to address these challenges

by leveraging a multi-relational representation learning module

to model and aggregate different relations, and further enlisting a

coupled RNN to capture the inter-temporal user-POI mutual influ-

ence. The extensive experiments conducted on the population-scale,

yet fine-grained individual-level location big data, supported by

comprehensive model comparisons, ablation and parameter studies,

validate the superiority of the proposed framework.
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