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1 Introduction

In recent years, graph mining has been widely used to
understand rich information hidden in graphs. Graph
Neural Networks (GNNs) have emerged as state-of-
the-art for graph mining and show impressive perfor-
mance in various real-world applications, e.g., health-
care [1, 2], bioinformatics [3, 4] and recommender sys-
tems [5, 6], to name a few.

To deal with the need for a huge number of
graph data and the regularization of user privacy [7]
when training GNN models, Federated Graph Ma-
chine Learning (FGML) [8, 9] is proposed. FGML
is a distributed machine learning scheme that trains
a graph model across different participating de-
vices/silos without sharing private data. While pro-
viding a promising paradigm, FGML faces several
challenges in realistic scenarios. For example, resi-
dents of a city may go to different banks for various
reasons. Their personal data, such as demographics,
income conditions, and transaction activities (inter-
actions) can be collected by bank branches. When
approving loan requests, a central bank administra-
tion (or central server) can utilize a graph model
trained on the entire bank network to evaluate better
if a loan applicant is benign. However, due to con-
flicts of interest, a bank may reluctant to share its
user networks with others. Thus, the first challenge
is that the local subgraphs collected from different
devices/silos are limited and may miss critical infor-
mation. What’s worse, a graph model trained on the
corrupted network plus the bias introduced by de-
vices/silos selection [10] could lead to undesired dis-
crimination against users from certain demographic
subgroups (e.g., age, gender, and race) and would
mistakenly reject a loan of a user that belongs to an

underprivileged group. As a result, how to alleviate
the bias in FGML is another challenge.

As an attempt to address the challenges, we
propose an FGML framework named EGRESS
(fEderated GeneRativE GNN with Structural de-
biaSing). The overall structure is shown in Fig.1.
Firstly, to deal with the challenge of missing informa-
tion (e.g., node and feature) across local subgraphs,
we collaboratively train a Generator Module to
generate missing neighbors as well as features for
nodes on each subgraph and form an augmented lo-
cal subgraph. Specifically, each subgraph first holds
out some nodes and trains the generator based on
the held-out neighbors. The gradients of the gen-
erator are then aggregated with ones on other sub-
graphs in a federated fashion. The output augmented
graph is later fed into a local GNN model trained
with FedAvg [8]. In addition, to tackle the second
challenge, we propose a Dibiasing Module where
we use a debiasing strategy with the help of GN-
NExplainer [11]. To be more specific, we employ a
Bias Explainer to identify edges that maximally ac-
count for the exhibited node-level bias given a node’s
computation graph in a device/silo. Similarly, an-
other Fairness Explainer can be defined by identify-
ing the edges whose presence can maximally alleviate
the node-level bias. We employ a sensitive bias metric
based on Wasserstein distance [12] in the probabilis-
tic outcome of GNN prediction since the probabilistic
space can better preserve the exhibited bias [13, 14].

2 Problem Setup

Preliminaries. We mainly focus on cross-silo
FGML in this proposal. Let D = {d1, d2, ..., dm} be
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Figure 1: Overall Structure of EGRESS

a set of M data owners. We denote a global graph
as G = {V,E,X}, where {V } is the node set, {X}
is the corresponding node feature set, and E is the
edge set. Under the FGML system, we have a cen-
tral server S to conduct Gradients Aggregation as
well as FedAvg, and M data owners with their corre-
sponding local subgraph Gi = {Vi, Ei, Xi},∀i ∈ [D].
In addition, any data owner Di cannot directly re-
trieve data from another data owner Dj . We assume
V = V1 ∪ V2 ∪ ... ∪ VM . Besides, we have missing
edges existing in reality but not stored in the whole
system. Specifically, for an edge ev,u ∈ E, where
v ∈ Vi, u ∈ Vj and ev,u ̸∈ (Ei ∪ Ej) (shown as the
dash line in Global Graph in Fig. 1).

Goal. We mainly focus on node classification. The
goal of the proposed framework is to collaboratively
learn on isolated subgraphs in all data owners, with-
out raw graph data sharing, to obtain a global graph
mining model (e.g., GNN) [15]. For the global graph
G = {V,E,X}, every node v ∈ V has its feature

xv ∈ X and label yv ∈ Y which is a dy-dimensional
one-hot vector.

3 Proposed Method

In this section, we first present the methodology to
train the Generator Module, which can generate
mended subgraphs under the FGML system. Sec-
ondly, we demonstrate how to address the bias intro-
duced by the FGML system and mended subgraphs
with the Debiasing Module.

3.1 Generator Module

To deal with the challenge of missing node and fea-
ture across local subgraphs, we proposed a Generator
Module. For each silo, we have a Generator Module
including a multi-layer GNN encoder He and a gen-
erative model Hg.
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He. The output of our GNN encoder is the embed-
dings for nodes, Zi = {zv|zv ∈ Rdz, v ∈ Vi}.

Hg. For each silo, we feed the output of the GNN
encoder Zi into the generative model. It contains a
MLP, Hg

1 , that aims to predict the numbers of miss-

ing neighbors for each node Ñ = {ñv|ñv ∈ N, v ∈ Vi},
and another MLP, Hg

2 , that generates a set of Ñ fea-

ture vectors X̃i = {x̃v|x ∈ Rñv×dx , ñv ∈ Ñ , v ∈ Vi}.
Objective Function. To train the Generator Mod-
ule, we first randomly hold out h% of nodes V h

i ⊂ V
and corresponding edges and features in the local sub-
graph Gi, denoted as Gi = {V i, Ei, Xi}, where V i,
Ei and Xi is the impaired node set, edge set, and
feature set, respectively. Thus Hg

1 can be optimized
by

L1
g =

1

|V i|

∑
v∈V i

LS
1 (ñv − nv),

where LS
1 is the smooth L1 distance [16]. Then, Hg

2

can be jointly optimized by Gradients Aggregation
[17]. Specifically, for node v ∈ V i, we ensure that the
generated features in silo i and j should be close to
the feature of v’s hided neighbor. Thus, mathemati-
cally, Hg

2 can be trained with

L2
g =

1

|V i|

∑
v∈V i

∑
p∈[ñv]

(
min

u∈NGi
(v)∩V h

i

(||x̃p
v − xu||)

+ α
∑

j∈[M ]\i

min
u∈Vj

(||Hg
2 (zv)

p − xu||)
)
,

where NGi
(v) is the neighbor of node v in the

local graph Gi and the feature of node u ∈
NGi

(v) ∩Vh
i provides ground truth for the gener-

ated feature in the first term minu∈NGi
(v)∩V h

i
(||x̃p

v −
xu||). In addition, the model gradients of loss term∑

j∈[M ]/i minu∈Vj
(||Hg

2 (zv)
p−xu||) can be calculated

from silo Dj . Finally, the gradients are weighted by
α and aggregated by silo Di.

Based on the Generator Module, we feed the
mended graph into a GNN model that can be trained
by FedAvg in FGML. Thus, the Generator Module
and a GNN classifier can be jointly trained by

L = λ1Lc + λ2L
1
g + λ3L

2
g,

where Lc is a cross-entropy loss of the GNN model
for node classification, and λ1, λ2, λ3 are hyperparam-
eters.

Table 1: Dataset Statistics.
Global Graph Silo1 Silo2 Silo3

#V 1000 367 254 379
#E 24970 7150 4911 7649

3.2 Debiasing Module

To alleviate the bias introduced by the generative
model [18] and the Federated Learning system [19],
also to get a more fair result, we utilize a node-level
Debiasing Module that includes a Bias Explainer and
Fairness Explainer inspired by GNNExplainer. The
output of this module is the debiased local subgraph
as shown in Fig.1. Please note that for simplicity we
ignore the silo notation for the following sections.
Objective Function. We use Ŷ to represent the
outcome of the GNN model in a silo, and ỹi to rep-
resent the probabilistic outcome of the GNN model
with fixed parameters based on the computation
graph Gi

c for node vi. We replace ŷi in the GNN
outcome with ỹi, and the outcome set can then be
denoted as Ỹ , e.g., Ỹ = Ŷ \{ŷi}∪{ỹi}. We then split

Ỹ into two sets based on the sensitive group (e.g.,

gender) as Ỹ0 and Ỹ1, also the corresponding distri-

bution is P (Ỹ0) and P (Ỹ1). If ŷi is replaced, then the
distribution distance between the two sensitive sub-
groups will also be changed accordingly. Thus, the
Biased Explainer aims to derive ỹi that can maximize
the distribution distance between P (Ỹ0) and P (Ỹ1).
This can be achieved by training a mask to identify
edges Ẽi in the computation graph of node vi, and Ẽi

are supposed to lead to a larger distribution distance.
Thus, the objective of the Biasd Explainer based on
Wasserstein-1 distance (W1) as

max
Ẽi

W1(P (Ỹ0), P (Ỹ1)),

where Ẽi is the edge set given by Bias Explainer.
We adopt a common-used approximation strategy
[20, 14] to optimize Wasserstein-1 distance with SGD.
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Table 2: Preliminary Experimental Results.
Accuracy Wasserstein Distance Wasserstein Distance’ Statistical Party Equal Opportunity

Global
Graph

0.7040 0.1487 0.1386 0.0309 0.0106

Silo1 0.6892 0.3901 0.3822 0.0481 0.0659
Silo2 0.6965 0.2221 0.2199 0.0491 0.0849
Silo3 0.6940 0.2867 0.2842 0.0338 0.0447

Similarly, the goal of Fairness Explainer is to train
another mask to identify an edge set Ẽ′

i in the com-

putation graph of node vi, and Ẽ′
i can minimize the

distribution distance. Thus, by following the simi-
lar method of Bias Explainer, ỹ′i is derived from the
Fairness Explainer based on its computation graph
Gi′

c , and P (Ỹ ′
0) and P (Ỹ ′

1) denote the distribution of

two sensitive groups by replacing ŷi with ỹ′i, (Ỹ
′ =

Ŷ \{ŷi} ∪ {ỹ′i}). Therefore, we demonstrate the goal
of the Fairness Explainer as

min
Ẽ′

i

W1(P (Ỹ ′
0), P (Ỹ ′

1)),

Based on the above methods, the two Explainers can
be jointly optimized with

Le = W1(P (Ỹ ′
0), P (Ỹ ′

1))−W1(P (Ỹ0), P (Ỹ1)).

Apart from that, the two explanations given by Bias
and enecccbvffrvuvgvtlbencbnrkvibbbekvednklbhclh
Fairness Explainers should incorporate the critical
information of the original prediction Ŷi. This con-
straint can be achieved by maximizing the mutual
information [11] between the corresponding compu-
tation graph Gi

c/G
i′
c and Ŷi:

Lm = −EŶi|Gi
c
[logPΘ(Ŷi|Gi

c)]−EŶi|Gi′
c
[logPΘ(Ŷi|Gi′

c )].

Thus, the two explainers can be jointly trained by

L = λ4Le + λ5Lm + λ6Lr,

where λ4, λ5, λ6 are hyperparameters and Lr is the
regularization term to ensure the sparsity of the
masks of the two explainers.

4 Experiments

In this section, we demonstrate the experiments of
our proposed framework on the graph classification
task. We first introduce settings, and then the ex-
perimental results.

4.1 Experimental Settings

Dataset. We mainly focus on the German Credit
dataset. Nodes and edges represent the bank clients
and the connections between client accounts, respec-
tively. To simulate the scenario of FGML, we cut the
graph of German Credit into three silos (from silo1 to
silo3) with Louvain algorithm [21]. The statistics of
the dataset are shown in Table 1, where #V means
the number of nodes and #E means the number of
edges.
Evaluation Metrics. We use four metrics in the
experiments. Accuracy can be used to gauge the
model performance. The node-level bias can be mea-
sured by Wasserstein-1 distance, the lower, the
better. Statistical Party [22] and Equal Oppor-
tunity [23] are two traditional fairness metrics.

4.2 Experimental Results

The preliminary experimental results are demon-
strated in Table 2.

• The row of the Global Graph means the result
is calculated on the graph that is not split into
different parts. It sets the upper bound of the
experiment. Regarding accuracy, our proposed
framework achieves comparable results.

• With respect to the node-level bias, the column
Wasserstein Distance denotes the results ac-
quired before the Debiasing Module. Compared
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with the result of Global Graph, the FGML sys-
tem and the generative model definitely intro-
duces node-level bias, which proves the necessity
of our Debiasing Module.

• Wasserstein Distance’ shows the node-level
bias after the Debiasing Module. The reduc-
tion of node-level bias can be observed in Global
Graph and all silos. This indicates that our
proposed Wasserstein distance-based objective
functions effectively help to identify edges that
introduce bias.

• Statistical Party and Equal Opportunity
also demonstrate the node-level bias after our
Debiasing Module. The comparable results can
be observed with respect to Statistical Party.
However, we still have room to improve on the
metric of Equal Opportunity.

5 Future Works

In this section, I present my thoughts on future works
inspired by the experiments.

• Framework. The framework can be further
refactored in the future. The Generator Mod-
ule is originally proposed to deal with problems
in the medical area, thus, we could redesign the
framework to make it fit our scenario. In ad-
dition, this framework contains codes based on
both Pytorch and TensorFlow. We are not sure
if the fuse of these two libraries can cause the
degradation of performance. Thus, it is neces-
sary to modify the framework in a unified way
as it benefits both code sharing and future ex-
periments.

• Data Heterogeneity. When I conducted the
experiments, I observed that the performance as
well as the node-level bias highly depend on the
data on each silo (e.g., node and edge number).
If the data gap is huge, for example, one silo
contains 100 nodes but another 500, the results
will degrade so much. More research on dealing
with heterogeneous data while assuring fairness
is needed.

• Generative Model. To deal with the data
heterogeneity, from my perspective, we can re-
sort to generative models. Also the appearance
of diffusion models [24, 25] on CV area provides
us a powerful way to utilize probabilistic gener-
ative models. There might be potential in the
FGML system. Also, some augmentation meth-
ods like LAGNN [26] could be used in the Fed-
erated Learning scenario.

• Trustworthy FGML. In our framework, the
debiasing strategy is not trained with a Feder-
ated Learning fashion, since in my opinion, we
want to acquire a mask tailored for each silo.
It makes no sense to aggregate bias information
from other silos. However, there might be other
ways to maintain fairness in FGML, e.g., try
other fairness notions apart from group fairness.

6 Conclusion

In a nutshell, we propose a framework called
EGRASS to utilize a Generator Module in a dis-
tributed subgraph system. The Debias Module is
then used to alleviate the node-level bias introduced
by a generative model and the federated system. Ex-
perimental results evidence the necessity of our pro-
posed framework and point out some future direc-
tions we can pursue.
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