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1 Introduction

In recent years, graph mining has been widely used to
understand rich information hidden in graphs. Graph
Neural Networks (GNNs) have emerged as state-of-
the-art for graph mining and show impressive perfor-
mance in various real-world applications, e.g., health-
care [1, 2], bioinformatics [3, 4] and recommender sys-
tems [5, 6], to name a few.

To deal with the need for a huge number of
graph data and the regularization of user privacy [7]
when training GNN models, Federated Graph Ma-
chine Learning (FGML) [8, 9] is proposed. FGML
is a distributed machine learning scheme that trains
a graph model across different participating de-
vices/silos without sharing private data. While pro-
viding a promising paradigm, FGML faces several
challenges in realistic scenarios. For example, resi-
dents of a city may go to different banks for various
reasons. Their personal data, such as demographics,
income conditions, and transaction activities (inter-
actions) can be collected by bank branches. When
approving loan requests, a central bank administra-
tion (or central server) can utilize a graph model
trained on the entire bank network to evaluate better
if a loan applicant is benign. However, due to con-
flicts of interest, a bank may reluctant to share its
user networks with others. Thus, the first challenge
is that the local subgraphs collected from different
devices/silos are limited and may miss critical infor-
mation. What’s worse, a graph model trained on the
corrupted network plus the bias introduced by de-
vices/silos selection [10] could lead to undesired dis-
crimination against users from certain demographic
subgroups (e.g., age, gender, and race) and would
mistakenly reject a loan of a user that belongs to an

underprivileged group. As a result, how to alleviate
the bias in FGML is another challenge.

As an attempt to address the challenges, we
propose an FGML framework named EGRESS
(fEderated GeneRativE GNN with Structural de-
biaSing). The overall structure is shown in Fig.1.
Firstly, to deal with the challenge of missing informa-
tion (e.g., node and feature) across local subgraphs,
we collaboratively train a Generator Module to
generate missing neighbors as well as features for
nodes on each subgraph and form an augmented local
subgraph. Specifically, each subgraph first holds out
some nodes and trains the generator based on the
held-out neighbors. The gradients of the generator
are then aggregated with ones on other subgraphs in
a federated fashion. The output augmented graph is
later fed into a local GNN model trained with Fe-
dAvg [8]. In addition, to alleviate bias, we propose a
Dibiasing Module with the help of GNNExplainer
[11]. Specifically, we employ a Bias Explainer to iden-
tify edges that maximally account for the exhibited
node-level bias given a node’s computation graph in
a device/silo. Similarly, another Fairness Explainer
can be defined by identifying the edges whose pres-
ence can maximally alleviate the node-level bias. The
exhibited node-level bias can be measured by the dis-
tribution distance of sensitive features (for simplicity,
here we concentrate on gender)1. The distance can be
measured by employing a sensitive bias metric based
on Wasserstein distance [14] in the probabilistic out-
come of GNN prediction since the probabilistic space
can better preserve the exhibited bias [12, 15].

1Bias is the discrimination against certain demographic
subgroups, and fairness means the discrimination is excluded
from sensitive features [12, 13].
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Figure 1: Overall Structure of EGRESS

2 Problem Setup

Preliminaries. We mainly focus on cross-silo
FGML in this proposal. Let D = {d1, d2, ..., dm} be
a set of M data owners. We denote a global graph
as G = {V,E,X}, where {V } is the node set, {X}
is the corresponding node feature set, and E is the
edge set. Under the FGML system, we have a cen-
tral server S to conduct Gradients Aggregation as
well as FedAvg, and M data owners with their corre-
sponding local subgraph Gi = {Vi, Ei, Xi},∀i ∈ [D].
In addition, any data owner Di cannot directly re-
trieve data from another data owner Dj . We assume
V = V1 ∪ V2 ∪ ... ∪ VM . Besides, we have missing
edges existing in reality but not stored in the whole
system. Specifically, for an edge ev,u ∈ E, where
v ∈ Vi, u ∈ Vj and ev,u ̸∈ (Ei ∪ Ej) (shown as the
dash line in GlobalGraph in Fig. 1).

Goal. We mainly focus on node classification. The
goal of the proposed framework is to collaboratively

learn on isolated subgraphs in all data owners, with-
out raw graph data sharing, to obtain a global graph
mining model (e.g., GNN) [16]. For the global graph
G = {V,E,X}, every node v ∈ V has its feature
xv ∈ X and label yv ∈ Y which is a dy-dimensional
one-hot vector.

3 The Proposed Method

In this section, we first present the methodology to
train the Generator Module, which can generate
mended subgraphs under the FGML system. Sec-
ondly, we demonstrate how to address the bias intro-
duced by the FGML system and mended subgraphs
with the Debiasing Module.

3.1 Generator Module

To deal with the challenge of missing node and fea-
ture across local subgraphs, we proposed a Generator
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Module. For each silo, we have a Generator Module
including a multi-layer GNN encoder He and a gen-
erative model Hg.

He. The output of our GNN encoder is the embed-
dings for nodes, Zi = {zv|zv ∈ Rdz, v ∈ Vi}.

Hg. For each silo, we feed the output of the GNN
encoder Zi into the generative model. It contains a
MLP, Hg

1 , that aims to predict the numbers of miss-

ing neighbors for each node Ñ = {ñv|ñv ∈ N, v ∈ Vi},
and another MLP, Hg

2 , that generates a set of Ñ fea-

ture vectors X̃i = {x̃v|x ∈ Rñv×dx , ñv ∈ Ñ , v ∈ Vi}.
Objective Function. To train the Generator Mod-
ule, we first randomly hold out h% of nodes V h

i ⊂ V
and corresponding edges and features in the local sub-
graph Gi, denoted as Gi = {V i, Ei, Xi}, where V i,
Ei and Xi is the impaired node set, edge set, and
feature set, respectively. Thus Hg

1 can be optimized
by

L1
g =

1

|V i|

∑
v∈V i

LS
1 (ñv − nv),

where LS
1 is the smooth L1 distance [17]. Then, Hg

2

can be jointly optimized by Gradients Aggregation
[18]. Specifically, for node v ∈ V i, we ensure that the
generated features in silo i and j should be close to
the feature of v’s hided neighbor. Thus, mathemati-
cally, Hg

2 can be trained with

L2
g =

1

|V i|

∑
v∈V i

∑
p∈[ñv]

(
min

u∈NGi
(v)∩V h

i

(||x̃p
v − xu||)

+ α
∑

j∈[M ]\i

min
u∈Vj

(||Hg
2 (zv)

p − xu||)
)
,

where NGi
(v) is the neighbor of node v in the

local graph Gi and the feature of node u ∈
NGi

(v) ∩Vh
i provides ground truth for the gener-

ated feature in the first term minu∈NGi
(v)∩V h

i
(||x̃p

v −
xu||). In addition, the model gradients of loss term∑

j∈[M ]/i minu∈Vj
(||Hg

2 (zv)
p−xu||) can be calculated

from silo Dj . Finally, the gradients are weighted by
α and aggregated by silo Di.

Based on the Generator Module, we feed the
mended graph into a GNN model that can be trained
by FedAvg in FGML. Thus, the Generator Module

and a GNN classifier can be jointly trained by

L = λ1Lc + λ2L
1
g + λ3L

2
g,

where Lc is a cross-entropy loss of the GNN model
for node classification, and λ1, λ2, λ3 are hyperparam-
eters.

Table 1: Dataset Statistics.

Global Graph Silo1 Silo2 Silo3
#V 1000 367 254 379
#E 24970 7150 4911 7649

Table 2: Results on Performance.

Accuracy ROC-AUC
GlobalGraph 0.7040 0.7388
LocalGraph1 0.6892 0.7114
LocalGraph2 0.6965 0.6670
LocalGraph3 0.6940 0.6604
FedGNN 0.6985 0.7001
EGRESS 0.7025 0.7339

3.2 Debiasing Module

To alleviate the bias introduced by the generative
model [19] and the Federated Learning system [20],
also to get a more fair result, we utilize a node-level
Debiasing Module that includes a Bias Explainer and
Fairness Explainer inspired by GNNExplainer. The
output of this module is the debiased local subgraph
as shown in Fig.1. Please note that for simplicity we
ignore the silo notation for the following sections.
Objective Function. We use Ŷ to represent the
outcome of the GNN model in a silo, and ỹi to rep-
resent the probabilistic outcome of the GNN model
with fixed parameters based on the computation
graph Gi

c for node vi. We replace ŷi in the GNN
outcome with ỹi, and the outcome set can then be
denoted as Ỹ , e.g., Ỹ = Ŷ \{ŷi}∪{ỹi}. We then split

Ỹ into two sets based on the sensitive group (e.g.,

gender) as Ỹ0 and Ỹ1, also the corresponding distri-

bution is P (Ỹ0) and P (Ỹ1). If ŷi is replaced, then the
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Table 3: Results on Fairness.

Wasserstein Distance Wasserstein Distance’ Statistical Party Equal Opportunity
GlobalGraph 0.1487 0.1386 0.0309 0.0106
Silo1 0.3901 0.3822 0.0481 0.0659
Silo2 0.2221 0.2199 0.0491 0.0849
Silo3 0.2867 0.2842 0.0338 0.0447

distribution distance between the two sensitive sub-
groups will also be changed accordingly. Thus, the
Biased Explainer aims to derive ỹi that can maximize
the distribution distance between P (Ỹ0) and P (Ỹ1).
This can be achieved by training a mask to identify
edges Ẽi in the computation graph of node vi, and Ẽi

are supposed to lead to a larger distribution distance.
Thus, the objective of the Biasd Explainer based on
Wasserstein-1 distance (W1) as

max
Ẽi

W1(P (Ỹ0), P (Ỹ1)),

where Ẽi is the edge set given by Bias Explainer.
We adopt a common-used approximation strategy
[21, 15] to optimize Wasserstein-1 distance with SGD.
Similarly, the goal of Fairness Explainer is to train
another mask to identify an edge set Ẽ′

i in the com-

putation graph of node vi, and Ẽ′
i can minimize the

distribution distance. Thus, by following the simi-
lar method of Bias Explainer, ỹ′i is derived from the
Fairness Explainer based on its computation graph
Gi′

c , and P (Ỹ ′
0) and P (Ỹ ′

1) denote the distribution of

two sensitive groups by replacing ŷi with ỹ′i, (Ỹ
′ =

Ŷ \{ŷi} ∪ {ỹ′i}). Therefore, we demonstrate the goal
of the Fairness Explainer as

min
Ẽ′

i

W1(P (Ỹ ′
0), P (Ỹ ′

1)),

Based on the above methods, the two Explainers can
be jointly optimized with

Le = W1(P (Ỹ ′
0), P (Ỹ ′

1))−W1(P (Ỹ0), P (Ỹ1)).

Apart from that, the two explanations given by Bias
and Fairness Explainers should incorporate the crit-
ical information of the original prediction Ŷi. This
constraint can be achieved by maximizing the mutual

information [11] between the corresponding compu-

tation graph G̃i
c/G̃

i′
c and Ŷi:

Lm = −EŶi|G̃i
c
[logPΘ(Ŷi|G̃i

c)]−EŶi|G̃i′
c
[logPΘ(Ŷi|G̃i′

c )].

Thus, the two explainers can be jointly trained by

L = λ4Le + λ5Lm + λ6Lr,

where λ4, λ5, λ6 are hyperparameters and Lr is the
regularization term to ensure the sparsity of the
masks of the two explainers.

3.3 Debiasing Subgraph

In this section, we aim to alleviate bias on each sub-
graph with the instance-level explainers given by the
Debiasing Module. The rationale is that the fairness
of a GNN’s prediction can be promoted by reduc-
ing node-level bias. This intuition also aligns with
existing works [22, 15, 23]. However, only removing
edges that tend to introduce bias in the outcome of a
GNN model might lead to erasing some critical edges
for the model performance (e.g., GNN Prediction).
Similarly, it is neither reasonable to merely preserve
edges found by Fairness Explainer since other unse-
lected edges may contribute to the prediction result
of other nodes. As a consequence, we first sample
some nodes from each Mended Local Subgraph. And
then we remove edges in the edge set Ẽi given by the
Bias Explainer but not in the explanation Ẽ′

i from
the Fairness Explainer. Eventually, the bias in the
Mended Local Subgraph can be alleviated, and the
corresponding output is a Debiased Local Graph, as
shown in Fig. 1.
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4 Experiments

In this section, we demonstrate the experiments of
our proposed framework on the graph classification
task. We first introduce settings, and then the ex-
perimental results.

4.1 Experimental Settings

Dataset. We mainly focus on the German Credit
dataset. Nodes and edges represent the bank clients
and the connections between client accounts, respec-
tively. To simulate the scenario of FGML, we cut the
graph of German Credit into three silos (from silo1 to
silo3) with Louvain algorithm [24]. The statistics of
the dataset are shown in Table 1, where #V means
the number of nodes and #E means the number of
edges.
Evaluation Metrics. We use four metrics in the
experiments. Accuracy and ROC-AUC can be
used to gauge the model performance. The node-level
bias can be measured by Wasserstein-1 distance,
the lower, the better. Statistical Party [25] and
Equal Opportunity [26] are two traditional fair-
ness metrics.
Implementation Details. We adopt the split rate
for the training set and validation set as 0.8 and 0.1
in the training of Generator Module and Debiasing
Module. In the training of the Generator Module,
we set the training epochs as 20. We use 1 × 10−3

as the learning rate and 10 for feature size. We set
λ1, λ2 and λ3 as 1. We use hidden portion h = 0.5. In
addition, we set δ = 50 as the number of missing links
while splitting the GlobalGraph into each silo. The
coefficient of gradients aggregation α is 1. For the
training of the Debias Module, we use GNNExplainer
as the backbone of the two explainers. The learning
rate is 0.5 and the training epoch is 20. In addition,
we set λ4 = 1, λ5 = 1e − 4 and λ6 = 1e − 4. We
sample 10% of nodes in each silo for debiasing.

4.2 Experimental Results

4.2.1 Framework Performance

The preliminary experimental results on model per-
formance are demonstrated in Table 2. LocalGraph1-

3 denote the proposed Generator Module training on
each local graph without Gradients Aggregation and
FedAvg strategies. FedGNN is built on a GNN classi-
fier by employing FedAvg. These are set as baselines
for model performance. The row of GlobalGraph
means the result is calculated on the graph that is
not split into different parts. It sets the upper bound
of the experiment. We can observe that our proposed
framework outperforms FedGNN and all LocalGraph
models thanks to the Generator Module with Gra-
dients Aggregation. In addition, compared with the
result of GlobalGraph, EGRESS achieves comparable
performance.

4.2.2 Framework Fairness

We conduct experiments to verify the important pro-
motion of Fairness brought by EGRESS. The results
are shown in Table 3, where Silo1-Silo3 of column
Wasserstein Distance denotes the bias of predic-
tion results before the Debiasing Module of EGRESS,
while Wasserstein Distance’ shows the node-level
bias after the Debiasing Module. We have the follow-
ing observation emerging from the results:

• From column Wasserstein Distance, com-
pared with the result of GlobalGraph, the FGML
system and the generative model definitely intro-
duce node-level bias, which proves the necessity
of our Debiasing Module.

• From Wasserstein Distance’, the reduction of
node-level bias can be observed in GlobalGraph
and all silos. This indicates that our proposed
Wasserstein distance-based objective functions
effectively help to alleviate the exhibited bias by
incorporating the two explainers.

• Statistical Party and Equal Opportunity
also demonstrate the node-level bias after our
Debiasing Module. The comparable results can
be observed with respect to Statistical Party.
However, we still have room to improve on the
metric of Equal Opportunity.
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(a) Hidden Portion (b) # Missing Cross-Subgraph Links (c) Coefficient of Gradients Agg.

Figure 2: Hyperparameter Analysis w.r.t. Performance.

4.2.3 Hyperparameter Analysis

In this section we conduct the hyperparameter anal-
ysis of the proposed framework. Regarding the per-
formance of EGRESS, we explore the Hidden Por-
tion, h, of nodes while training Generator Module,
the number of missing cross-subgraph links, δ, while
assigning subgraphs to each silo, and the coefficient α
of Gradients Aggregation. The results based on Ac-
curacy are reported, as we witness the same trend on
ROC-AUC. We have the following observations from
Fig.2.

• Fig.2(a) indicates either too small or too large
hidden portion of nodes when training the Gen-
erator Module can degrade the framework per-
formance. A small hidden proportion leads to
insufficient data for training the Generator Mod-
ule, while a large one makes the subgraph in each
silo sparse.

• Referring to Fig.2(b), our proposed model is ro-
bust regarding missing links. This is because
EGRESS can generate missing links to reduce
the influence of missing data.

• The coefficient of Gradients Aggregation α mea-
sures how much information will be brought from
other silos. From 2(c), it shows the robustness of
the Gradients Aggregation method. In general,
even though our framework is not sensitive to hy-
perparameters, the performance can still benefit
from proper fine-tuning.

We then explore the results on fairness with Hidden
Portion h and the number of missing cross-subgraph
links δ. The outcome is shown in Fig.3.

• Fig.3(a) demonstrates that with more nodes be-
ing hidden, the Wasserstein Distance fluctuates
significantly. This is because the sparse sub-
graph on each silo resulting from a large hidden
portion can impact the output of the Genera-
tor Module and lead to undesired bias in the
Mended Local subgraph. This implies the need
for our Debiasing Module.

• The number of missing cross-subgraph links sim-
ulates the scenario of lacking critical information
while splitting the GlobalGraph into different si-
los. As shown in Fig.3(b), more bias is intro-
duced to the prediction results of each data in-
stance as the amount of missing links becomes
larger. This also aligns with our non-trivial dis-
cussion that limited information in silos under an
FGML system shows distinct bias against some
groups of data (e.g., gender).

5 Future Works

The experiments demonstrate the potential of our
proposed framework. I also present my thoughts on
future works inspired by the experiment results.

• Framework. The framework can be further
refactored in the future. The Generator Module
was originally proposed to deal with problems
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(a) Hidden Portion

(b) # Missing Cross-Subgraph Links

Figure 3: Hyperparameter Analysis w.r.t. Bias.

in the medical area, thus, we could redesign the
framework to make it fit our scenario. In ad-
dition, this framework contains codes based on
both Pytorch and TensorFlow. We are not sure
if the fuse of these two libraries can cause the
degradation of performance. Thus, it is neces-
sary to modify the framework in a unified way
as it benefits both code sharing and future ex-
periments.

• Data Heterogeneity. When I conducted the
experiments, I observed that the performance as
well as the node-level bias highly depended on
the data on each silo (e.g., node and edge num-
ber). If the data gap is huge, for example, one
silo contains 100 nodes but another 500, the re-
sults will degrade so much. More research on

dealing with heterogeneous data while assuring
fairness is needed.

• Generative Model. To deal with the data
heterogeneity, from my perspective, we can re-
sort to generative models. Also the appearance
of diffusion models [27, 28] on CV area provides
us a powerful way to utilize probabilistic genera-
tive models. In addition, a generative model may
output similar features for multiple nodes, pre-
venting us from generating diverse neighbors for
a node, especially in an FGML scenario. Thus,
tackling this problem is one thing we can explore.

• Trustworthy FGML. In our framework, the
debiasing strategy is not trained with a Feder-
ated Learning fashion, since in my opinion, we
want to acquire a mask tailored for each silo.
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It makes no sense to aggregate biased informa-
tion from other silos. However, there might be
other ways to maintain fairness in FGML, e.g.,
try other fairness notions apart from group fair-
ness.

6 Related Work

In this section, we review some related works from
two folds, including the Fairness of GNNs and Fed-
erated Graph Machine Learning.

Fairness of GNNs. Various studies have investi-
gated the Fairness of GNNs. There are two types
of fairness most commonly discussed: group fair-
ness [25] and individual fairness [29]. Group fair-
ness requires that demographic subgroups are treated
equally by GNNs [30, 31]. Adversarial learning is
one of the most popular debiasing approaches aim-
ing to learn less biased node representations that
fool the discriminator [32, 33]. Fair representation
can be achieved when the discriminator can hardly
distinguish the sensitive feature given any learned
node representations. Moreover, from the perspec-
tive that biased prediction stems from unfair con-
nections in the graph structure or biased node fea-
tures, fair graph methods are proposed. These meth-
ods aim to modify graph structure [13] or node fea-
tures [34] before or during the training of GNNs. On
the other hand, individual fairness requires that simi-
lar individuals obtain similar predictions from GNNs
[35, 29]. Based on the Lipschitz property [25], [35]
refines the definition of individual fairness for graph
mining and utilizes similarity-weighted output dis-
crepancy between nodes to measure unfairness. An-
other line of research fulfills the goal from a ranking
perspective [36]. Different from the existing methods,
our proposed framework not only alleviate bias intro-
duced to the prediction of each individual data, but
also provides an approach to understanding how bias
arises with the help of two explainers. This is critical
for safe GNN deployment in realistic decision-making
scenarios.

Federated Graph Machine Learning. Ef-
forts have been made to design federated systems
for graph data learning tasks, where these works can

be broadly categorized into two settings, Federated
Learning with Structured Data and Structured Fed-
erated Learning [9]. In the first setting, devices/silos
possess graph data and jointly train a graph model
orchestrated by a central server. To explore the high-
order interactions of user-item graphs while tackling
privacy leakage, pseudo-interacted item sampling is
proposed [37]. Then CGFL [38] is proposed to dy-
namically find clusters of clients based on the gra-
dients of GNNs. Additionally, generative models are
utilized to deal with the data missing problem [39, 2].
For example, spectral normalized generative adver-
sarial networks (SN-GAN) [39] are proven effective
in predicting missing edges and nodes. The second
setting of Structured Federated Learning assumes re-
lations exist among clients, where either model pa-
rameters [40] or embeddings [41] from each client are
transmitted to a central server. Compared with the
existing methods, in addition to achieving promis-
ing performance under a federated learning scenario,
our proposed framework utilizes a sensitive metric
to measure the bias introduced by federated learning
systems and generative models. Moreover, we pro-
vide a potential methodology to facilitate the devel-
opment of a fairer FGML system in decision-critical
cases.

7 Conclusion

In a nutshell, we propose a framework called
EGRASS to utilize a Generator Module in a dis-
tributed subgraph system. The Debiasing Module
is then used to alleviate the node-level bias intro-
duced by a generative model and the federated sys-
tem. Experimental results evidence the necessity of
our proposed framework and point out some future
directions we can pursue.
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